Respuesta :

The Solution:

Given the function below:

[tex]f(x)=x^5-8x^3+16x[/tex]

We are required to find all the x-intercepts of the function f(x).

The x-intercepts are the zeroes of the given function. That is, the values of x when f(x) is zero (0).

[tex]\begin{gathered} \text{ When x=0, f(x) will be zero.} \\ x=0 \\ f(0)=0 \\ \text{ So, (0,0) is an x-intercept.} \end{gathered}[/tex][tex]\begin{gathered} \text{ When x=-2} \\ f(-2)=(-2)^5-8(-2)^3+16(-2) \\ f(-2)=-32+64-32=0 \\ \text{ So, (-2,0) is an x-intercept} \end{gathered}[/tex][tex]\begin{gathered} \text{ When x=2} \\ f(2)=(2^5)-8(2^3)+16(2)=32-64+32=0 \\ \text{ So, (2,0) is an x-intercept} \end{gathered}[/tex]

Therefore, the correct answer is

[tex](0,0),(-2,0),(2,0)[/tex]

RELAXING NOICE
Relax