Respuesta :

Answer:

p = -3

Explanation:

The equation of the parabola is:

[tex]y^2=-12x[/tex]

We will calculate for ''p'' as shown below:

[tex]\begin{gathered} y^2=-12x \\ \text{Rewriting the equation in vertex form, we have:} \\ x=-\frac{y^2}{12} \\ We\text{ will use vertex form to determine the values of: }a,h,k \\ x=a(y-k)^2+h \\ \Rightarrow a=-\frac{1}{12} \\ \Rightarrow k=0 \\ \Rightarrow h=0 \\ Since\text{ }the\text{ value of ''a'' is negative, the parabola opens left} \\ (h,k)=(0,0) \\ We\text{ will find }^{\doubleprime}p^{\doubleprime}\text{ using the formula given below:} \\ p=\frac{1}{4a} \\ p=\frac{1}{4(-\frac{1}{12})} \\ p=\frac{1}{-\frac{1}{3}} \\ p=-3 \\ \\ \therefore p=-3 \end{gathered}[/tex]

Therefore, p equals -3

RELAXING NOICE
Relax