ANSWER :
The zeros are -1, 3i and -3i
EXPLANATION :
From the problem, we have :
[tex]f(x)=x^3+x^2+9x+9[/tex]Factor completely :
[tex]\begin{gathered} f(x)=x^2(x+1)+9(x+1) \\ f(x)=(x^2+9)(x+1) \end{gathered}[/tex]Zeros are values of x when f(x) = 0
That will be :
[tex]0=(x^2+9)(x+1)[/tex]Equate both factors to 0.
[tex]\begin{gathered} x^2+9=0 \\ x^2=-9 \\ x=\sqrt{-9} \\ x=3i\quad and\quad x=-3i \end{gathered}[/tex][tex]\begin{gathered} x+1=0 \\ x=-1 \end{gathered}[/tex]