We need to solve the system of equations:
[tex]\begin{gathered} 4x+24y=-448 \\ \\ y=-7x-5 \end{gathered}[/tex]So, we can substitute y in the first equation with the expression for y given in the second equation.
We obtain:
[tex]\begin{gathered} 4x+24(-7x-5)=-448 \\ \\ 4x-168x-120=-448 \\ \\ -164x=-448+120 \\ \\ -164x=-328 \\ \\ x=\frac{-328}{-164} \\ \\ x=2 \end{gathered}[/tex]Now, we can use the previous result to find y:
[tex]\begin{gathered} y=-7(2)-5 \\ \\ y=-14-5 \\ \\ y=-19 \end{gathered}[/tex]Therefore, the solution is:
[tex]\begin{gathered} $\mathbf{x=2}$ \\ \mathbf{y=-19} \end{gathered}[/tex]