Since K is the midpoint of JL the distance between JK should be the same KL
[tex]\begin{gathered} JK=KL \\ 9X-5=7X+3 \end{gathered}[/tex]solve the equation for X
[tex]\begin{gathered} 9X-5=7X+3 \\ 9X-7X=3+5 \\ 2X=8 \\ X=4 \end{gathered}[/tex]To find the value of JL, use the value of x and add both JK and JL
[tex]\begin{gathered} JL=(9X-5)+(7X+3) \\ JL=(31)+(31) \\ JL=62 \end{gathered}[/tex]