Given the equation :
[tex]3\sin ^2x-6\sin x=0[/tex]Let: y = sin x
So,
[tex]\sin ^2x=y^2[/tex]the given equation will be:
[tex]3y^2-6y=0[/tex]Solve for y, take 3y as a common:
[tex]\begin{gathered} 3y(y-2)=0 \\ 3y=0\rightarrow y=0 \\ y-2=0\rightarrow y=2 \end{gathered}[/tex]so,
[tex]\begin{gathered} y=0\rightarrow\sin x=0\rightarrow x=0or\pi \\ y=2\rightarrow\sin x=2 \end{gathered}[/tex]Note: the range of sine function is [ -1, 1]
So, sin x = 2 ( is rejected)
So, the answer will be: x ={ 0 , pi }