We are given
Initial Population = 300,000
Rate of increasing per year = 3% = 0.03
We want to find the population at time t = 22 years
Solution
The formula to use the formula for the compound interest given as
[tex]P(t)=P_0(1+\frac{r}{n})^{nt}[/tex]Here
[tex]\begin{gathered} P(t)=\text{Population at any given time} \\ P_0=\text{initial population} \\ r=\text{rate } \\ n=number\text{ of times of increment in a year} \\ t=\text{time} \end{gathered}[/tex]Thus, we want to find P(22)
[tex]\begin{gathered} P_0=300,000 \\ r=0.03 \\ n=1 \\ t=22 \end{gathered}[/tex]Substituting into the formula we have
[tex]\begin{gathered} P(t)=P_0(1+\frac{r}{n})^{nt} \\ P(22)=300000(1+\frac{0.03}{1})^{22} \\ P(22)=300000(1.03)^{22} \\ P(22)=574831.0227 \\ P(22)=574831\text{ (to the nearest whole number)} \end{gathered}[/tex]Therefore, the population in 22 years time will be 574,831