According to Coulomb's law force between 2 charged objects is
[tex]F=\frac{k_e\times q_1\times q_2}{r^2}[/tex]Where q1 and q2 are the charges, r is the distance between them and
[tex]k_e\text{ is Coulomb's constant }[/tex][tex]k_e=\frac{1}{4\pi\epsilon_0}=8.98\times10^9\text{ kg}\cdot m^3\cdot s^{-2}\cdot C^{-2}[/tex]Now,
[tex]F_1=\frac{k_e\times q_1\times q_2}{r^2}=0.14[/tex]Let say q2 changes its value to
[tex]2q_2_{}[/tex]and r changes to 2r
Now the new force will be
[tex]F_2=\frac{k_e\times q_1\times2q_2}{(2r)^2}=\frac{k_e\times q_1\times q_2}{2r^2}[/tex]Now dividing the two values of force
[tex]\frac{F_1}{F_2}=\frac{k_eq_1q_2\times2r^2}{k_eq_1q_2\times r^2}[/tex]ON further simplifying
[tex]\frac{F_1}{F_2}=2[/tex]Or
[tex]F_2=\frac{F_1}{2}=\frac{0.14}{2}=0.07\text{ N}[/tex]i.e. new force is 0.07N