Respuesta :

Given

[tex]\begin{gathered} \cos (A)=-\frac{3}{5} \\ \cos (B)=\frac{33}{65} \end{gathered}[/tex]

To evaluate:

[tex]\cos (A+B)[/tex]

Use the identity:

[tex]\cos (A+B)=\cos (A)\cos (B)-\sin (A)\sin (B)[/tex]

To get sin(A):

Using the trigonometric ratios:

[tex]\begin{gathered} \cos \theta=\frac{\text{adj}}{\text{hyp}},\sin \theta=\frac{\text{opp}}{\text{hyp}} \\ \therefore \\ adj=3 \\ hyp=5 \end{gathered}[/tex]

Using the Pythagorean Theorem, we have:

[tex]\begin{gathered} opp^2=hyp^2-adj^2 \\ opp^2=5^2-3^2 \\ opp^2=25-9 \\ opp^2=16 \\ opp=\sqrt[]{16}=4 \end{gathered}[/tex]

Hence,

[tex]\sin (A)=\frac{4}{5}[/tex]

Since A is in Quadrant III,

[tex]\sin (A)=-\frac{4}{5}[/tex]

To get sin(B):

Using the trigonometric ratios:

[tex]\begin{gathered} \cos \theta=\frac{\text{adj}}{\text{hyp}},\sin \theta=\frac{\text{opp}}{\text{hyp}} \\ \therefore \\ adj=33 \\ hyp=65 \end{gathered}[/tex]

Using the Pythagorean Theorem, we have:

[tex]\begin{gathered} opp^2=hyp^2-adj^2 \\ opp^2=65^2-33^2 \\ opp^2=4225-1089 \\ opp^2=3116 \\ opp=\sqrt[]{3116}=56 \end{gathered}[/tex]

Hence,

[tex]\sin (B)=\frac{56}{65}[/tex]

To Evaluate cos (A + B):

Recall:

[tex]\cos (A+B)=\cos (A)\cos (B)-\sin (A)\sin (B)[/tex]

Inputting all the necessary values, we have:

[tex]\cos (A+B)=(-\frac{3}{5}\cdot\frac{33}{65})-(-\frac{4}{5}\cdot\frac{56}{65})[/tex]

Using a calculator, we have the answer to be:

[tex]\cos (A+B)=\frac{5}{13}[/tex]

RELAXING NOICE
Relax