Let 0 be an angle in quadrant II such that cos 0

we have that
cos(theta)=-5/6
step 1
Find out sin(theta)
Remember that
[tex]\sin ^2(\theta)+\cos ^2(\theta)=1[/tex]substitute given value
[tex]\sin ^2(\theta)+(-\frac{5}{6})^2=1[/tex][tex]\sin ^2(\theta)^{}=1-\frac{25}{36}[/tex][tex]\sin ^{}(\theta)^{}=\frac{\sqrt[]{11}}{6}[/tex]The value of sin(theta) is positive because the angle theta lies on the II quadrant
step 2
Find out csc(theta)
[tex]\csc (\theta)=\frac{1}{\sin (\theta)}[/tex][tex]\csc (\theta)=\frac{6}{\sqrt[]{11}}[/tex]simplify
[tex]\csc (\theta)=\frac{6\sqrt[]{11}}{11}[/tex]step 3
Find out tan(\theta)
[tex]\tan (\theta)=\frac{\sin (\theta)}{\cos (\theta)}[/tex][tex]\tan (\theta)=-\frac{\sqrt[]{11}}{5}[/tex]