Respuesta :

we have that

cos(theta)=-5/6

step 1

Find out sin(theta)

Remember that

[tex]\sin ^2(\theta)+\cos ^2(\theta)=1[/tex]

substitute given value

[tex]\sin ^2(\theta)+(-\frac{5}{6})^2=1[/tex][tex]\sin ^2(\theta)^{}=1-\frac{25}{36}[/tex][tex]\sin ^{}(\theta)^{}=\frac{\sqrt[]{11}}{6}[/tex]

The value of sin(theta) is positive because the angle theta lies on the II quadrant

step 2

Find out csc(theta)

[tex]\csc (\theta)=\frac{1}{\sin (\theta)}[/tex][tex]\csc (\theta)=\frac{6}{\sqrt[]{11}}[/tex]

simplify

[tex]\csc (\theta)=\frac{6\sqrt[]{11}}{11}[/tex]

step 3

Find out tan(\theta)

[tex]\tan (\theta)=\frac{\sin (\theta)}{\cos (\theta)}[/tex][tex]\tan (\theta)=-\frac{\sqrt[]{11}}{5}[/tex]

RELAXING NOICE
Relax