Respuesta :

The triangles ABC and EDC are similar which means that the rate between corresponding sides is equal, so that:

[tex]\frac{EC}{AC}=\frac{DC}{BC}[/tex]

We know that

EC=7

AC=21

DC=x

BC=20-x

[tex]\begin{gathered} \frac{7}{21}=\frac{x}{20-x} \\ \frac{1}{3}=\frac{x}{(20-x)} \end{gathered}[/tex]

First, you have to multiply both sides by (20-x) to take the x-term from the denominator's place

[tex]\begin{gathered} \frac{1}{3}(20-x)=(20-x)\frac{x}{20-x} \\ \frac{1}{3}(20-x)=x \end{gathered}[/tex]

Next, distribute the multiplication on the parentheses term:

[tex]\begin{gathered} \frac{1}{3}\cdot20-\frac{1}{3}\cdot x=x \\ \frac{20}{3}-\frac{1}{3}x=x \end{gathered}[/tex]

And pass the x-term to the right side of the equation by applying the opposite operation

[tex]\begin{gathered} \frac{20}{3}-\frac{1}{3}x+\frac{1}{3}x=x+\frac{1}{3}x \\ \frac{20}{3}=\frac{4}{3}x \end{gathered}[/tex]

Finally multiply both sides of the expression by the reciprocal fraction of 4/3, i.e. the inverse fraction

[tex]\begin{gathered} \frac{20}{3}\cdot\frac{3}{4}=(\frac{4}{3}\cdot\frac{3}{4})x \\ 5=x \end{gathered}[/tex]

x=5 → so the length of CD is 5 units.

The correct option is D.

RELAXING NOICE
Relax