THE LAST PART TO THE QUESTION ONLYPLEASE DO NPT ANSWER THE FIRST 2 PARTS ONLY THE LAST POART

#12 c
The given expression is
[tex]\ln (\frac{e^{6x}(x^2+14)^{\frac{1}{9}}}{(x-4)^4})[/tex]We will use the rule of expansion of ln
[tex]\ln (\frac{ab}{c})=la(a)+\ln (b)-\ln (c)[/tex][tex]\ln (e^{6x})+\ln (x^2+14)^{\frac{1}{9}}-\ln (x-4)^4[/tex]Use the rule
[tex]\begin{gathered} \ln (a)^n=n\ln (a) \\ \ln (e^n)=n \end{gathered}[/tex][tex]6x+\frac{1}{9}\ln (x^2+14)-4\ln (x-4)[/tex]The answer is
[tex]\ln (\frac{e^{6x}(x^2+14)^{\frac{1}{9}}}{(x-4)^4})=6x+\frac{1}{9}\ln (x^2+14)-4\ln (x-4)[/tex]