Respuesta :

#12 c

The given expression is

[tex]\ln (\frac{e^{6x}(x^2+14)^{\frac{1}{9}}}{(x-4)^4})[/tex]

We will use the rule of expansion of ln

[tex]\ln (\frac{ab}{c})=la(a)+\ln (b)-\ln (c)[/tex][tex]\ln (e^{6x})+\ln (x^2+14)^{\frac{1}{9}}-\ln (x-4)^4[/tex]

Use the rule

[tex]\begin{gathered} \ln (a)^n=n\ln (a) \\ \ln (e^n)=n \end{gathered}[/tex][tex]6x+\frac{1}{9}\ln (x^2+14)-4\ln (x-4)[/tex]

The answer is

[tex]\ln (\frac{e^{6x}(x^2+14)^{\frac{1}{9}}}{(x-4)^4})=6x+\frac{1}{9}\ln (x^2+14)-4\ln (x-4)[/tex]

RELAXING NOICE
Relax