Respuesta :

We will have that the area of the triangle is the following:

*First: We determine the missing value for the sides and angle:

Angle Y:

[tex]Y=180-67-50\Rightarrow Y=63[/tex]

Side y:

[tex]\frac{y}{\sin(63)}=\frac{44}{\sin(50)}\Rightarrow y=\frac{44\sin(63)}{\sin(50)}[/tex][tex]\Rightarrow y=51.17756211\ldots[/tex]

Side x:

[tex]\frac{x}{\sin(67)}=\frac{44}{\sin(50)}\Rightarrow x=\frac{44\sin(67)}{\sin(50)}[/tex][tex]\Rightarrow x=52.8718848\ldots[/tex]

*Second: We determine the area of the triangle as follows [Heron's formula]:

[tex]s=\frac{44+\frac{44\sin(63)}{\sin(50)}+\frac{44\sin(67)}{\sin(50)}}{2}\Rightarrow s\approx74.02472346[/tex]

Then:

[tex]A=\sqrt[]{(74.02472346)(74.02472346-44)(74.02472346-\frac{44\sin(63)}{\sin(50)})(74.02472346-\frac{44\sin (67)}{\sin (50)})}[/tex][tex]\Rightarrow A\approx1874.8[/tex]

So, the area of the triangle is approximately 1874.8 mm^2.

RELAXING NOICE
Relax