Explanation
Given
[tex]3x^2+2x-5=0[/tex][tex]\begin{gathered} \mathrm{For\:a\:quadratic\:equation\:of\:the\:form\:}ax^2+bx+c=0\mathrm{\:the\:solutions\:are\:} \\ x_{1,\:2}=\frac{-b\pm \sqrt{b^2-4ac}}{2a} \end{gathered}[/tex]Therefore;
[tex]\begin{gathered} \mathrm{For\:}\quad a=3,\:b=2,\:c=-5 \\ x_{1,\:2}=\frac{-2\pm \sqrt{2^2-4\cdot \:3\left(-5\right)}}{2\cdot \:3} \\ x_{1,\:2}=\frac{-2\pm \:8}{2\cdot \:3} \\ separate\text{ solutions} \\ x_1=\frac{-2+8}{2\cdot \:3},\:x_2=\frac{-2-8}{2\cdot \:3} \\ x_1=\frac{6}{6}x_2=\frac{-10}{6} \\ x_1=1\text{ },x_2=\frac{-5}{3} \end{gathered}[/tex]Answer:
[tex]x_{1}=1\text{,}x_{2}=\frac{-5}{3}[/tex]