Complete the square to make a perfect trinomial. Write the result as a binomial squared

We have the expression:
[tex]a^2-\frac{a}{2}+C^2[/tex]We have to find the third term C², the independent term, in order for this expression to be a perfect trinomial.
We can express the square of a binomial as:
[tex](x+y)^2=x^2+2xy+y^2[/tex]So in this case, one term of the binomial will be "a".
Then, if we compare it to our expression, the term in the middle (2xy) would be twice the product of a and C.
If we write the equation we obtain:
[tex]-\frac{a}{2}=2aC[/tex]We can use it to find the value of C as:
[tex]\begin{gathered} -\frac{a}{2}=2aC \\ -\frac{1}{2}=2C \\ C=-\frac{1}{4} \\ \Rightarrow C^2=(-\frac{1}{4})^2=\frac{1}{16} \end{gathered}[/tex]Then, we can write the binomial as:
[tex]a^2-\frac{a}{2}+\frac{1}{16}=(a-\frac{1}{4})^2[/tex]Answer:
a² - a/2 + 1/16 = (a - 1/4)²