Please help!!! Identify the methods of differentiation, and then find the derivative using the methods. THANKS

First, notice that the function is the quotient between two expressions. Then, first we need to use the quotient rule to find the derivative:
[tex]\frac{d}{dx}\frac{g(x)}{h(x)}=\frac{h(x)\cdot\frac{d}{dx}g(x)-g(x)\cdot\frac{d}{dx}h(x)}{h(x)^2}[/tex]In this case, g(x) = 3x+2 and h(x) = x^3. Then:
[tex]\begin{gathered} \frac{d}{dx}f(x)=\frac{d}{dx}\frac{3x+2}{x^3} \\ =\frac{x^3\cdot\frac{d}{dx}(3x+2)-(3x+2)\cdot\frac{d}{dx}x^3}{(x^3)^2} \end{gathered}[/tex]Now, notice that the derivatives of 3x+2 and x^3 appear in the numerator. Use the power rule to find the derivative of those expressions:
[tex]\frac{d}{dx}x^n=^{}nx^{n-1}[/tex]Then:
[tex]\begin{gathered} \frac{d}{dx}(3x+2)=3x^0+0=3\cdot1+0=3+0=3 \\ \\ \frac{d}{dx}x^3=3x^2 \end{gathered}[/tex]So, the differentiation continues:
[tex]\begin{gathered} \frac{x^3\cdot\frac{d}{dx}(3x+2)-(3x+2)\cdot\frac{d}{dx}x^3}{(x^3)^2} \\ =\frac{x^3\cdot(3)-(3x+2)\cdot(3x^2)}{(x^3)^2} \end{gathered}[/tex]Finally, simplify the expression:
[tex]\begin{gathered} \frac{x^3\cdot(3)-(3x+2)\cdot(3x^2)}{(x^3)^2} \\ =\frac{3x^3-(3x\cdot3x^2+2\cdot3x^2)}{x^6} \\ =\frac{3x^3-(9x^3+6x^2)}{x^6} \\ =\frac{3x^3-9x^3-6x^2}{x^6} \\ =\frac{-6x^3-6x^2}{x^6} \\ =\frac{-6x-6}{x^4} \\ =\frac{-6(x+1)}{x^4} \end{gathered}[/tex]Therefore, we used both the power rule and the quotient rule to find the derivative, and the derivative is:
[tex]\frac{d}{dx}\frac{3x+2}{x^3}=-\frac{6(x+1)}{x^4}[/tex]