ANSWER
[tex]4.1s[/tex]EXPLANATION
We want to calculate the time it will take for the football to hit the ground.
To do this, we have to solve the equation given for h = 0:
[tex]-16t^2+vt+s=0[/tex]Substitute the given values of v and s into the equation and solve for t:
[tex]-16t^2+64t+4=0[/tex]Solve this using the quadratic formula:
[tex]t=\frac{-b\pm\sqrt[]{b^2-4ac}}{2a}[/tex]where:
[tex]a=-16;b=64;c=4[/tex]Therefore:
[tex]\begin{gathered} t=\frac{-64\pm\sqrt[]{64^2-(4\cdot-16\cdot4)}}{2(-16)}=\frac{-64\pm\sqrt[]{4096+256_{}}}{-32} \\ t=\frac{-64\pm\sqrt[]{4352}}{-32}=\frac{-64\pm65.97}{-32} \\ t=\frac{-64+65.97}{-32};t=\frac{-64-65.97}{-32} \\ t=\frac{1.97}{-32};t=\frac{-129.97}{-32} \\ \Rightarrow t\approxeq-0.1s;t\approxeq4.1s \end{gathered}[/tex]Since time cannot be negative, it implies that the football will spend 4.1 seconds in the air before it hits the ground.