Which expression represents the value of sin C - cos C?r + sr- sr/ss- r

The sum of angle of triangle is equal to 180 degree. So equation for angle B and angle C is,
[tex]\begin{gathered} B+C+90=180 \\ B=90-C \end{gathered}[/tex]Substitute 90 - C for B in the expression to obtain the value of sin C and cos C.
[tex]\begin{gathered} \sin B=r \\ \sin (90-C)=r \\ \cos C=r \end{gathered}[/tex]And
[tex]\begin{gathered} \cos B=s \\ \cos (90-C)=s \\ \sin C=s \end{gathered}[/tex]Evaluate the value of sinC - cosC.
[tex]\sin C-\cos C=s-r[/tex]So answer is s -r.