Given the road has a slope of 2° 25'
We will find the rise in 6900 feet of horizontal run.
Let the angle of rising = θ
So,
[tex]\tan \theta=\frac{rise}{run}[/tex][tex]\theta=2\degree25^{\prime}=2+\frac{25}{60}=2.4167\degree[/tex]So,
[tex]\begin{gathered} \tan 2.4167=\frac{rise}{6900} \\ \\ \text{rise}=6900\cdot\tan 2.4167=291.21 \end{gathered}[/tex]The answer rounded to the nearest hundredth.
So, the answer will be Rise = 291.21 feet.