What is the interior SUM of the figure above S= Degrees What is the value of x? X=

The sum of the interior angle of a polygon is given by the formula
[tex]\begin{gathered} (n-2)180^0 \\ \text{where } \\ n=nu\text{mber of sides of the polygon} \end{gathered}[/tex]From the figure shown in the question
[tex]n=5[/tex]
Therefore, the sum of the interior angles is
[tex]\begin{gathered} (5-2)\times180 \\ 3\times180^0 \\ 540^0 \end{gathered}[/tex][tex]4x-8+91+3x-5+92+125=540^0[/tex][tex]\begin{gathered} 4x+3x+308^0-13^0=540^0 \\ 7x+295^0=540^0 \\ 7x=540^0-295^0 \\ 7x=245^0 \\ x=\frac{245}{7} \\ x=35^0 \end{gathered}[/tex]Hence, the sum of the interior angles is 540°, and the value of x= 35°