0.1998
Explanation
the coefficen of kinetic friction is given by the expression
[tex]\begin{gathered} \mu=\frac{f_f}{N} \\ wher \\ \mu\text{ is the coefficient of kinetic friction} \\ f_f\text{ is the force of friction} \\ N\text{ is the normal force} \end{gathered}[/tex]Step 1
Free Body Diagram
set the equations of Newton's second law
Newton's law is split into two components along x and y
, that, using our data, give
[tex]\begin{gathered} \Sigma fx=0, \\ \Sigma fx=F-ff=0 \\ so \\ F=ff \\ \text{replacing} \\ 20N=ff \end{gathered}[/tex]Step 2
y-axis
[tex]\begin{gathered} \Sigma fy=0 \\ N-mg=0 \\ so \\ N=mg \\ \text{replacing} \\ N=(10.2\text{ kg)(9.81 }\frac{m}{s^2}) \\ N=100.062\text{ Newtons} \end{gathered}[/tex]and finally, replace in the equation to find the coefficient of kinetic friction
[tex]\begin{gathered} \mu=\frac{f_f}{N} \\ \text{replace} \\ \mu=\frac{20N}{100.062N} \\ \mu=0.1998 \end{gathered}[/tex]therefore, the coefficient of kinetic friction between the floor and the box is
0.1998
I hope this helps you