Given the expression:
[tex]2x^2+13x-7[/tex]if we multiply it by 2/2, we get the following:
[tex](\frac{2}{2})(2x^2+13x-7)=\frac{4x^2+26x-14}{2}[/tex]which we can write in the following way:
[tex]\frac{4x^2+26x-14}{2}=\frac{(2x)^2+13(2x)-14}{2}[/tex]then, we can factor the numerator using 2x as a variable. Then, we have the following:
[tex]\frac{(2x)^2+13(2x)-14}{2}=\frac{(2x-1)(2x+14)}{2}[/tex]since the right factor has coefficients that are multiples of 2, we have:
[tex]\frac{(2x-1)(2x+14)}{2}=\frac{(2x-1)(x+7)(2)}{2}=(2x-1)(x+7)[/tex]therefore, the final factorization is (2x-1)(x+7)