We will have the following:
a. Wavelength in meters.
We know that 1 meter contains 1*10^9 nanometers, so:
[tex]\lambda=518nm\cdot\frac{1m}{1\cdot10^9nm^{}}\Rightarrow\lambda=5.18\cdot10^{-7}m[/tex]b.The frequency:
[tex]5.18\cdot10^{-7}m=\frac{3.0\cdot10^8m/s}{f}\Rightarrow f=\frac{3.0\cdot10^8m/s}{5.18\cdot10^{-7}m}[/tex][tex]\Rightarrow f=5.79\cdot10^{14}Hz[/tex]c. The energy: in Joules
[tex]E=(6.62\cdot10^{-34}m^2Kg/s)(5.79\cdot10^{14}/s)\Rightarrow E=3.83\cdot10^{-19}m^2Kg/s^2[/tex][tex]\Rightarrow E=3.83\cdot10^{-19}\cdot m^2Kg/s^2\cdot(J/m^2Kg/s^2)\Rightarrow E=3.83\cdot10^{-19}J[/tex]d. The color range in which a wavelength of 518nm is located is in the Green.