Respuesta :

Answer:

n≥1

Explanation:

Given the inequality

[tex]-3\mleft(1+4n\mright)-6n\le2n-23​[/tex]

Step 1: Open the bracket and simplify

[tex]\begin{gathered} -3-12n-6n\le2n-23​ \\ -3-18n\le2n-23 \end{gathered}[/tex]

Step 2: Add 18n to both sides of the inequality.

[tex]\begin{gathered} -3-18n+18n\le2n+18n-23 \\ -3\le20n-23 \end{gathered}[/tex]

Step 3: Add 23 to both sides of the inequality.

[tex]\begin{gathered} -3+23\le20n-23+23 \\ 20\le20n \end{gathered}[/tex]

Step 4: Divide both sides of the inequality by 20.

[tex]\begin{gathered} \frac{20}{20}\le\frac{20n}{20} \\ 1\le n \\ \implies n\ge1 \end{gathered}[/tex]
RELAXING NOICE
Relax