Answer:
n≥1
Explanation:
Given the inequality
[tex]-3\mleft(1+4n\mright)-6n\le2n-23[/tex]Step 1: Open the bracket and simplify
[tex]\begin{gathered} -3-12n-6n\le2n-23 \\ -3-18n\le2n-23 \end{gathered}[/tex]Step 2: Add 18n to both sides of the inequality.
[tex]\begin{gathered} -3-18n+18n\le2n+18n-23 \\ -3\le20n-23 \end{gathered}[/tex]Step 3: Add 23 to both sides of the inequality.
[tex]\begin{gathered} -3+23\le20n-23+23 \\ 20\le20n \end{gathered}[/tex]Step 4: Divide both sides of the inequality by 20.
[tex]\begin{gathered} \frac{20}{20}\le\frac{20n}{20} \\ 1\le n \\ \implies n\ge1 \end{gathered}[/tex]