Given:
A 9000 deposit accumulates to 9883, compounded annually for 8 years.
So, P = 9000, A = 9883, t = 8 years, n = 1
We will find the interest rate = r
We will use the following formula:
[tex]A=P(1+\frac{r}{n})^{nt}[/tex]Substitute the given values:
[tex]9883=9000(1+\frac{r}{1})^{1*8}[/tex]Solve the equation to find (r):
[tex]\begin{gathered} (1+r)^8=\frac{9883}{9000} \\ \\ 8*ln(1+r)=ln(\frac{9883}{9000})\approx0.09359 \\ \\ ln(1+r)=\frac{0.09359}{8}\approx0.0116989 \\ \\ 1+r=e^^{0.0116989}\approx1.011767 \\ \\ r=1.0117676-1=0.0117676 \\ \\ r=1.17676\% \end{gathered}[/tex]So, the answer will be:
The interest rate is 1.17676%