Triangle ABC, with vertices A(2,-8), B(5,-9), and C(4,-6), is drawn on the coordinate grid below. y 2 1 X -2 -1 1 N 4 5.6 7 8 9 10 -1 -2 -3 -4

First, we have to calculate the measures of the sides of the triangle.
Apply the distance formula:
[tex]d=\sqrt[]{(x2-x1)^2+(y2-y1)^2}[/tex]Replace with the coordinate points given:
A= (2,-8)
B= (5,-9)
C= (4,-6)
Side AC
[tex]d=\sqrt[]{(4-2)^2+(-6-(-8))^2}=\sqrt[]{2^2+2^2}=\sqrt[]{8}[/tex]Side CB
[tex]d=\sqrt[]{(5-4)^2+(-9-(-6))^2}=\sqrt[]{1+9}=\sqrt[]{10}[/tex]Side AB
[tex]d=\sqrt[]{(5-2)^2+(-9-(-8))}=\sqrt[]{9-1}=\sqrt[]{10}[/tex]Apply Heron's formula:
[tex]A\text{ =}\sqrt[]{s(s-a)(s-b)(s-c)}[/tex][tex]s=\frac{a+b+c}{2}[/tex]a, b, c are the distances ,CB , AC and AB
[tex]s=\frac{\sqrt[]{10}+\sqrt[]{10}+\sqrt[]{8}}{2}=\frac{2\sqrt[]{10}+\sqrt[]{8}}{2}=4.58[/tex][tex]undefined[/tex]