What are the x and y intercepts of the linear function represented in the table?

First, get the slope m, using any of the two ordered pairs in the table. For this problem we will use (2,10) and (3,12).
The slope of a linear function can defined using two points by
[tex]\begin{gathered} m=\frac{y_2-y_1}{x_2-x_1} \\ \\ \text{Given:} \\ (2,10)\rightarrow(x_1,y_1) \\ (3,12)\rightarrow(x_2,y_2) \\ \\ \text{Substitute the values and we get} \\ m=\frac{y_2-y_1}{x_2-x_1} \\ m=\frac{12-10}{3-2} \\ m=\frac{2}{1} \\ m=2 \end{gathered}[/tex]Now that we have the slope, we will solve for the y-intercept by using the y-intercept form of a linera function. We use any of the three points in the table, for this case we will use (4,14).
The y-intercept form of a linear function is defined as
[tex]\begin{gathered} y=mx+b \\ \text{where} \\ m\text{ is the slope} \\ b\text{ is the y-intercept} \\ \\ \text{Given:} \\ (4,14)\rightarrow(x,y) \\ m=2 \\ \\ y=mx+b \\ 14=(2)(4)+b \\ 14=8+b \\ 14-8=b \\ 6=b \\ b=6 \\ \\ \text{Therefore, the y-intercept is 6} \end{gathered}[/tex]To solve for the x-intercept, we set y = 0 to our linear function
[tex]\begin{gathered} y=mx+b \\ y=2x+6 \\ 0=2x+6 \\ -6=2x \\ 2x=-6 \\ \frac{2x}{2}=\frac{-6}{2} \\ x=-3 \\ \\ \text{therefore, the x-intercept is -3} \end{gathered}[/tex]Summary, therefore the x and y intercepts of the linear function y = 2x+6 is (-3,0) and (0,6).