Question is in the picture it’s a lot to type

1.
The ratio of their volumes is,
[tex]\begin{gathered} \text{Ratio}=\frac{108ft^3}{4000ft^3} \\ =\frac{27}{1000} \end{gathered}[/tex]Thus, the ratio of volume is 27:1000.
2.
The scale factor can be determined as,
[tex]\begin{gathered} \text{Scale factor=(}\frac{4000ft^3}{108ft^3})^{\frac{1}{3}} \\ =10\colon3 \end{gathered}[/tex]Thus, the scale factor is 10:3.
3.
The ratio of surface area is,
[tex]\begin{gathered} \text{Ratio of surface area=(}\frac{3}{10})^2 \\ =9\colon100 \end{gathered}[/tex]Thus, the ratio of surface area is 9:100.
4.
The surface area of the smaller cube can be determined as,
[tex]\begin{gathered} \frac{9}{100}=\frac{SA_{sc}}{SA_{bc}} \\ \frac{9}{100}=\frac{SA_{sc}}{157ft^2} \\ SA_{sc}=14.13ft^2 \end{gathered}[/tex]Thus, the surface area of the smaller cube is 14.13 square foot.