2. SABC is a regular triangular pyramid with all sides equal to 2 cm. Calculate the pyramid: 1) the length of the apothem; 2) the length of the apex.

Given:
SABC is a regular triangular pyramid with all sides equal to 2 cm.
That is,
[tex]s=2cm[/tex]To find:
1) The length of the apothem.
2) The length of the apex.
Explanation:
1)
Since it is a regular triangular pyramid.
So, it has 3 equilateral triangular faces.
The apothem "a" formula is given by,
[tex]a=\frac{s}{2\sqrt{3}}[/tex]Substituting the side length, we get
[tex]\begin{gathered} OM=\frac{2}{2\sqrt{3}} \\ OM=\frac{1}{\sqrt{3}}cm \end{gathered}[/tex]2)
Here, the slant height is,
[tex]l=2cm[/tex]The length of the apothem is,
[tex]a=OM=\frac{1}{\sqrt{3}}cm[/tex]By Pythagoras theorem,
[tex]\begin{gathered} SC^2=MC^2+SM^2 \\ 2^2=(\frac{2}{2})^2+SM^2 \\ 4=1+SM^2 \\ SM^2=3 \\ SM=\sqrt{3}cm \end{gathered}[/tex]Next, we find the length of the apex from O.
That is the length of SO.
Using the Pythagoras theorem,
[tex]\begin{gathered} SM^2=OM^2+SO^2 \\ (\sqrt{3})^2=(\frac{1}{\sqrt{3}})^2+SO^2 \\ 3=\frac{1}{3}+SO^2 \\ SO^2=3-\frac{1}{3} \\ SO^2=\frac{8}{3} \\ SO=\sqrt{\frac{8}{3}} \\ =\frac{2\sqrt{2}}{\sqrt{3}} \\ =\frac{2\sqrt{2}}{\sqrt{3}}\times\frac{\sqrt{3}}{\sqrt{3}} \\ SO=\frac{2\sqrt{6}}{3}cm \end{gathered}[/tex]Therefore, the length of the apex is,
[tex]\frac{2\sqrt{6}}{3}cm[/tex]Final answer:
The length of the apothem is,
[tex]a=OM=\frac{1}{\sqrt{3}}cm[/tex]The length of the apex is,
[tex]\frac{2\sqrt{6}}{3}cm[/tex]