Respuesta :

Solution:

Given the expression:

[tex]x^3-64[/tex]

The above expression can be rewritten as

[tex](x^3-4^3)[/tex]

To factor the expression, we apply the difference cubes formula.

From the difference cubes formula:

[tex](x^3-y^3)=(x-y)(x^2+xy+y^2)[/tex]

In this case,

[tex]y=4[/tex]

Thus, we have

[tex]\begin{gathered} (x^3-64)=(x^3-4^3) \\ =(x-4)(x^2+4x+4^2) \\ =(x-4)(x^2+4x+16) \end{gathered}[/tex]

Hence, we have

[tex](x-4)(x^2+4x+16)[/tex]

ACCESS MORE
EDU ACCESS