Solution:
Given the expression:
[tex]x^3-64[/tex]The above expression can be rewritten as
[tex](x^3-4^3)[/tex]To factor the expression, we apply the difference cubes formula.
From the difference cubes formula:
[tex](x^3-y^3)=(x-y)(x^2+xy+y^2)[/tex]In this case,
[tex]y=4[/tex]Thus, we have
[tex]\begin{gathered} (x^3-64)=(x^3-4^3) \\ =(x-4)(x^2+4x+4^2) \\ =(x-4)(x^2+4x+16) \end{gathered}[/tex]Hence, we have
[tex](x-4)(x^2+4x+16)[/tex]