Given:-
[tex](x^{10})(x^5)^2[/tex]To find the value of x^k.
So now we simplify,
[tex]\begin{gathered} (x^{10})(x^5)^2=x^k \\ (x^{10})(x^{10})=x^k \\ x^{10+10}=x^k \\ x^{20}=x^k \end{gathered}[/tex]Equating the powers, we get,
[tex]k=20[/tex]So the required value of k is 20.