Respuesta :

[tex]x^2+18x+95=2[/tex]

In a graph of a quadratic equation the vert4ex is the extreme point (maximum or minimum).

To write the given equation is vertex form:

[tex]y=a(x-h)^2+k[/tex]

1. Write the equation in standrad form:

[tex]f(x)=ax^2+bx+c[/tex]

[tex]\begin{gathered} f(x)=x^2+18x+95-2 \\ \\ f(x)=x^2+18x+93 \end{gathered}[/tex]

2. Find the coordinates of the vertex (h,k):

To find the coordinate h use the next formula:

[tex]h=\frac{-b}{2a}[/tex][tex]h=\frac{-18}{2(1)}=-9[/tex]

To find the coordinate k evaluate f(x) when x=h:

[tex]undefined[/tex]

RELAXING NOICE
Relax