Respuesta :

(1) In the parallellogram shown;

[tex]AD=BC=11.7[/tex]

AD = 11.7

(2)

[tex]AE=EC=9.5[/tex]

EC = 9.5

(3)

[tex]\begin{gathered} ED=EB=7.2 \\ \text{Also,} \\ BD=ED+EB \\ BD=7.2+7.2 \\ BD=14.4 \end{gathered}[/tex]

DB = 14.4

To calculate angle DAB, note that line AD is parallel to line BC, that means CAB and ACD are alternate angles.

Hence;

[tex]\begin{gathered} \angle CAB=\angle ACD=65 \\ \text{Also,} \\ \angle DAB=\angle\text{CAD}+\angle CAB \\ \angle DAB=30+65 \\ \angle DAB=95 \end{gathered}[/tex]

To calculate angle ABC, note that in triangle ABC,

[tex]\begin{gathered} \angle CAB+\angle ACB+\angle ABC=180 \\ \text{Sum of angles in a triangle is 180 degrees} \\ 65+30+\angle ABC=180 \\ \angle ABC=180-(65+30) \\ \angle ABC=180-95 \\ \angle ABC=85 \end{gathered}[/tex]

RELAXING NOICE
Relax