Respuesta :

Given:

AB || DE

BC = 14

CD = 7

CE = 7

DE = 5

To prove:

The two triangles are congruent.

Consider the two triangles ABC and EDC.

[tex]\begin{gathered} \angle BCA=\angle\text{DCE ( Vertical angles)} \\ \angle ABC=\angle EDC\text{ (Alternate angles)} \\ \angle BAC=\angle DEC\text{ (Alternate angles)} \end{gathered}[/tex]

By AAA similarity, If any two angles of a triangle are equal to any two angles of another triangle, then the two triangles are similar to each other.

Therefore,

[tex]\Delta ABC\approx\Delta EDC[/tex]

So, the corresponding sides are proportional.

[tex]\begin{gathered} \frac{AB}{ED}=\frac{BC}{DC}=\frac{AC}{EC} \\ \frac{AB}{5}=\frac{14}{2}=\frac{AC}{7} \\ \frac{AB}{5}=7=\frac{AC}{7} \end{gathered}[/tex]

So, equating (1) and (2), we get

AB = 35

So, equating (2) and (3), we get

AC = 49

Thus, the missing sides are AB=35 and AC=49.

RELAXING NOICE
Relax