Write the complex number in trigonometric form express the angle and radiance do not round any intermediate computations round the values in your answer to the nearest hundredth

Write the complex number in trigonometric form express the angle and radiance do not round any intermediate computations round the values in your answer to the class=

Respuesta :

Given a complex number in trigonometric form below:

[tex]\begin{gathered} x+yi=r(\cos \theta+i\sin \theta),where \\ r=\sqrt[]{x^2+y^2} \\ \theta=\tan ^{-1}(\frac{y}{x}),-\pi<\theta\leq\pi \end{gathered}[/tex]

Given

[tex]z=6+4i[/tex][tex]\begin{gathered} x=6 \\ y=4 \\ r=\sqrt[]{6^2+4^2} \\ r=\sqrt[]{36+16} \\ r=\sqrt[]{52} \end{gathered}[/tex][tex]\begin{gathered} \theta=\tan ^{-1}(\frac{4}{6}) \\ \theta=\tan ^{-1}(0.6667) \\ \theta=33.69^0 \end{gathered}[/tex]

Convert 33.69 degrees to radian

[tex]33.69^0=0.588rad[/tex]

Since tan is positive in the first and third quadrants, the value of teetha would be

[tex]\begin{gathered} 1st\text{ quadrant,} \\ \theta=33.69^0=0.588rad \\ 4th\text{ quadrant} \\ \theta=180^0+33.69^0 \\ \theta=213.69^0=3.73\text{rad} \end{gathered}[/tex]

Therefore,

[tex]\begin{gathered} z=6+4i \\ z=\sqrt[]{52}(\cos 0.588+i\sin 0.588),or \\ z=\sqrt[]{52}(\cos 3.73+i\sin 3.73) \end{gathered}[/tex]

Hence, the trigonometric form 6+4i is √52(cos0.588+isin0.588)

RELAXING NOICE
Relax