Given
The cartesian equation of a plane is 3x+y-5z-7=0.
To determine the vector equation of the plane.
Explanation:
It is given that,
The cartesian equation of a plane is 3x+y-5z-7=0.
That implies,
[tex]3x+y-5z=7[/tex]Since the general equation of a plane is
[tex]\vec{r}\cdot\hat{n}=d[/tex]From, the cartesian equation, d=7.
Then,
[tex]\begin{gathered} (x\vec{i}+y\vec{j}+z\vec{k})\cdot\hat{n}=7 \\ \because3x+y-5z=7 \\ Then, \\ (x\vec{\imaginaryI}+y\vec{j}+z\vec{k})\hat{\cdot n}=3x+y-5z \\ \therefore\hat{n}=3\vec{\mathrm{i}}+\vec{j}-5\vec{k} \end{gathered}[/tex]Hence, the vector equation is,
[tex]\vec{r}\cdot(3\vec{\mathrm{i}}+\vec{j}-5\vec{k})=7[/tex]