Respuesta :

Answer:

B. 9

Explanation:

Given f(x) and g(x) below:

[tex]\begin{aligned}&f(x)=-x^{3} \\&g(x)=\left|\frac{1}{8} x-1\right|\end{aligned}[/tex]

We want to find the value of the composition (g o f)(4).

[tex](g\circ f)(4)=g[f(4)][/tex]

First, find the value of f(4).

[tex]\begin{gathered} \begin{equation*} f(x)=-x^3 \end{equation*} \\ \implies f(4)=-4^3=-64 \end{gathered}[/tex]

Next, substitute f(4) into g[f(4)].

[tex]\begin{gathered} g[f(4)]=g(-64) \\ \begin{equation*} g(x)=\left|\frac{1}{8}x-1\right| \end{equation*} \\ \implies g(-64)=\left|\frac{1}{8}(-64)-1\right|=|-8-1|=|-9| \\ \text{The absolute symbol always gives a positive result.} \\ \begin{equation*} |-9|=9 \end{equation*} \\ \implies(g\circ f)(4)=9 \end{gathered}[/tex]

The value of (g o f)(4) is 9.

The correct choice is B.

RELAXING NOICE
Relax