Solution:
Given:
To get the reading rate of Jordan and Alyssa, we find the slope of both from the data given.
For Jordan:
[tex]\begin{gathered} Using\text{ the points }(2,215)\text{ and }(3,260) \\ where; \\ x_1=2,y_1=215 \\ x_2=3,y_2=260 \\ \\ The\text{ formula for calculating slope is;} \\ m=\frac{y_2-y_1}{x_2-x_1} \\ m=\frac{260-215}{3-2} \\ m=\frac{45}{1} \\ m=45\text{ } \\ Therefore,\text{ Jordan's reading rate is 45 pages per hour} \end{gathered}[/tex]
Therefore, Jordan reads at a rate of 45 pages per hour.
For Alyssa:
[tex]\begin{gathered} Using\text{ the points }(0,40)\text{ and }(4,240) \\ where; \\ x_1=0,y_1=40 \\ x_2=4,y_2=240 \\ \\ The\text{ formula for calculating slope is;} \\ m=\frac{y_2-y_1}{x_2-x_1} \\ m=\frac{240-40}{4-0} \\ m=\frac{200}{4} \\ m=50 \\ Therefore,\text{ Alyssa's reading rate is 50 pages per hour} \end{gathered}[/tex]
Therefore, Alyssa reads at a rate of 50 pages per hour.
Hence, the difference in reading rates of Jordan and Alyssa is;
[tex]50-45=5\text{ pages per hour}[/tex]
Therefore,
Based on this data, A reads at a faster rate by 5 pages per hour