I need help solving this practice I’m having trouble with it

From the problem, we have :
[tex]2\sin ^2x+5\sin x-3=0[/tex]Let m = sin x
[tex]2m^2+5m-3=0[/tex]Factor completely :
[tex]\begin{gathered} 2m^2+5m-3=0 \\ (2m-1)(m+3)=0 \end{gathered}[/tex]Equate factors to 0 then solve for m :
[tex]\begin{gathered} 2m-1=0 \\ 2m=1 \\ m=\frac{1}{2} \\ \\ m+3=0 \\ m=-3 \end{gathered}[/tex]Bring back m = sin x :
[tex]\begin{gathered} m=\frac{1}{2}\Rightarrow\sin x=\frac{1}{2} \\ m=-3\Rightarrow\sin x=-3 \end{gathered}[/tex]Note that the sin of an angle is ranging from -1 to 1, so sin x = -3 is invalid. Therefore, neglect sin x = -3 and use sin x = 1/2 only.
[tex]\begin{gathered} \sin x=\frac{1}{2} \\ \text{take arcsin :} \\ \arcsin (\sin x)=\frac{1}{2} \\ x=30\quad \text{and}\quad 150 \end{gathered}[/tex]Convert 30 and 150 degrees to radians :
[tex]\begin{gathered} 30\times\frac{\pi}{180}=\frac{\pi}{6} \\ 150\times\frac{\pi}{180}=\frac{5\pi}{6} \end{gathered}[/tex]Note that 2π is one full circle.
So we can add it to the solution.
That will be :
[tex]\begin{gathered} \frac{\pi}{6}+2\pi n \\ \text{and} \\ \frac{5\pi}{6}+2\pi n \end{gathered}[/tex]ANSWERS :
[tex]\begin{gathered} \frac{\pi}{6}+2\pi n,\quad \text{ where n is an integer} \\ \text{and} \\ \frac{5\pi}{6}+2\pi n,\quad \text{ where n is an integer} \end{gathered}[/tex]