We will have the following:
First, we determine the distance traveled:
[tex]31J=(2.5kg)(9.8m/s^2)h\Rightarrow h=\frac{62}{49}m[/tex]Now, we determine the time it tool to travel that distance:
[tex]\begin{gathered} \frac{62}{49}m=(9.8m/s^2)t^2\Rightarrow t^2=\frac{310}{2401}s^2 \\ \\ \Rightarrow t=\frac{\sqrt{310}}{49}s \end{gathered}[/tex]Now, we determine the velocity:
[tex]v=(9.8m/s^2)(\frac{\sqrt{310}}{49}s)\Rightarrow v=\frac{\sqrt{310}}{5}m/s[/tex]Now, we determine the kinetic energy:
[tex]\begin{gathered} k=\frac{1}{2}(2.5kg)(\frac{\sqrt{310}}{5}m/s)^2\Rightarrow k=15.5J \\ \\ \Rightarrow k\approx16J \end{gathered}[/tex]So, the kinetic energy will be approximately 16 Joules.