Find all other zeros of P(x) = x? – 8x + 32, given that 2=2i is a zero.If there is more than one zero, separate them with commas.)

Given:
[tex]f(x)=x^3-8x+32[/tex]The zero is (2-2i).
Required:
We need to find the zeros of the given function f(x).
Explanation:
The zeros of the function f(x) is 2-2i.
Use the synthetic method.
The given f(x) can be written as follows.
[tex]x^3-8x+32=(x-(2-2i))(x^2+(2-2i)x+(-8+(2-2i)^2))[/tex][tex]=(x-(2-2i))(x^2+(2-2i)x+(-8+4-8i-4))[/tex][tex]=(x-(2-2i))(x^2+(2-2i)x+(-8-8i))[/tex][tex]Use\text{ \lparen2-2i\rparen x=\lparen-2-2i\rparen x+4x}[/tex][tex]=(x-(2-2i))(x^2+(-2-2i)x+4x+(-8-8i))[/tex][tex]=(x-(2-2i))(x(x+(-2-2i))+4(x+(-2-2i)))[/tex][tex]=(x-(2-2i))(x+(-2-2i))(x+4)[/tex][tex]=(x-(2-2i))(x-(2+2i))(x+4)[/tex][tex]=(x-(2-2i))(x-(2+2i))(x-4)[/tex]The zeros of the function f(x) are (2-2i), (2+2i), and (-4).
Final answer:
[tex](2+2i),-4.[/tex]