Respuesta :

Given:

[tex]f(x)=x^3-8x+32[/tex]

The zero is (2-2i).

Required:

We need to find the zeros of the given function f(x).

Explanation:

The zeros of the function f(x) is 2-2i.

Use the synthetic method.

The given f(x) can be written as follows.

[tex]x^3-8x+32=(x-(2-2i))(x^2+(2-2i)x+(-8+(2-2i)^2))[/tex]

[tex]=(x-(2-2i))(x^2+(2-2i)x+(-8+4-8i-4))[/tex]

[tex]=(x-(2-2i))(x^2+(2-2i)x+(-8-8i))[/tex][tex]Use\text{ \lparen2-2i\rparen x=\lparen-2-2i\rparen x+4x}[/tex]

[tex]=(x-(2-2i))(x^2+(-2-2i)x+4x+(-8-8i))[/tex]

[tex]=(x-(2-2i))(x(x+(-2-2i))+4(x+(-2-2i)))[/tex]

[tex]=(x-(2-2i))(x+(-2-2i))(x+4)[/tex]

[tex]=(x-(2-2i))(x-(2+2i))(x+4)[/tex]

[tex]=(x-(2-2i))(x-(2+2i))(x-4)[/tex]

The zeros of the function f(x) are (2-2i), (2+2i), and (-4).

Final answer:

[tex](2+2i),-4.[/tex]

Ver imagen KarolynnO108464
RELAXING NOICE
Relax