The equation shown has unknown number. Enter a fraction that makes the equation true.

Explanation
Step 1
Let x represents the unknow value
so
[tex]\begin{gathered} x\colon\frac{3}{7}=\frac{7}{15} \\ do\text{ the division} \\ \frac{7x}{3}=\frac{7}{15} \end{gathered}[/tex]Step 2
Multiply both sides by 3
[tex]\begin{gathered} \frac{7x}{3}=\frac{7}{15} \\ \frac{7x}{3}\cdot3=\frac{7}{15}\cdot3 \\ 7x=\frac{21}{15} \\ \text{simplify the rigth sides} \\ 7x=\frac{7}{5} \end{gathered}[/tex]Step 3
divide both sides by 7
[tex]\begin{gathered} 7x=\frac{7}{5} \\ \frac{7x}{7}=\frac{\frac{7}{5}}{\frac{7}{1}} \\ x=\frac{7}{35} \\ x=\frac{1}{5} \end{gathered}[/tex]therefore the value is
[tex]\frac{1}{5}[/tex]