Use the figure to evaluate the function given that g(x)=cos xg(theta/2)=

First, notice that since the point (a,1) belongs to the circumference x^2+y^2=5, then:
[tex]\begin{gathered} a^2+1^2=5 \\ \Rightarrow a^2+1=5 \\ \Rightarrow a^2=4 \end{gathered}[/tex]Since the point (a,1) is in the second quadrant, then:
[tex]a=-2[/tex]Remember that the coordinates of a point on a circle of radius r can be written in terms of the angle as:
[tex](r\cos (\theta),r\sin (\theta))[/tex]The radius of the circle in this case is the square root of 5. Then:
[tex](-2,1)=(\sqrt[]{5}\cos (\theta),\sqrt[]{5}\sin (\theta))[/tex]Therefore:
[tex]\begin{gathered} \sqrt[]{5}\cos (\theta)=-2 \\ \Rightarrow\cos (\theta)=-\frac{2}{\sqrt[]{5}} \end{gathered}[/tex]On the other hand, remember the following identity:
[tex]\cos (\frac{\theta}{2})=\sqrt[]{\frac{1+\cos (\theta)}{2}}[/tex]Substitute the value for the cosine of θ:
[tex]\begin{gathered} \cos (\frac{\theta}{2})=\sqrt[]{\frac{1-\frac{2}{\sqrt[]{5}}}{2}} \\ =\sqrt[]{\frac{\sqrt[]{5}-2}{2\sqrt[]{5}}} \\ =\sqrt[]{\frac{5-2\sqrt[]{5}}{10}} \end{gathered}[/tex]Therefore:
[tex]g(\frac{\theta}{2})=\sqrt[]{\frac{5-2\sqrt[]{5}}{10}}[/tex]