Given
The rational function,
[tex]f(x)=\frac{x-2}{x+3}[/tex]To find:
The domain of the rational function.
Explanation:
It is given that,
[tex]f(x)=\frac{x-2}{x+3}[/tex]That implies,
Set the denominator equal to 0.
Then,
[tex]\begin{gathered} x+3=0 \\ x=-3 \end{gathered}[/tex]Therfore, the domain of the function is,
[tex]\begin{gathered} Domain:\lbrace x\in R:x\ne-3\rbrace \\ \Rightarrow(-\infty,\infty)=R \\ \because x\ne-3 \\ \Rightarrow x\in(-\infty,-3)\text{ }or\text{ }(-3,\infty) \\ \Rightarrow x\in(-\infty,-3)\cup(-3,\infty) \end{gathered}[/tex]Hence, the interval notation of the domain is
[tex](-\infty,-3)\cup(-3,\infty)[/tex]