Respuesta :

Given function is

[tex]f(x)=-|x-5|[/tex]

Set x=5, substitute x=5, we get

[tex]f(5)=-|5-5|[/tex]

[tex]f(5)=-|0|[/tex][tex]f(5)=0[/tex]

The point (5,0) is lie on the ray.

Set x=0, and substitute x=0 in the function , we get

[tex]f(0)=-|0-5|[/tex]

[tex]f(0)=-|-5|[/tex][tex]\text{ Use |-5|=5 since -5<0.}[/tex]

[tex]f(0)=-5[/tex]

The point (0,-5) lies on the ray.

Set x=10, and substitute in function, we get

[tex]f(10)=-|10-5|[/tex]

[tex]f(10)=-|5|[/tex]

[tex]f(10)=-5[/tex]

The point (10,-5) lies on the function.

Mark these points (5,0), (0,-5), and (10,-5) and join the ray.

The graph of the given function is

When x=2,

[tex]f(2)=-|2-5|=-3[/tex]

The point is (2,-3)

When x=8,

[tex]f(8)=-|8-5|=-3[/tex]

The point is (8,-3).

Ver imagen ChiefJ482420
Ver imagen ChiefJ482420
RELAXING NOICE
Relax