Given function is
[tex]f(x)=-|x-5|[/tex]Set x=5, substitute x=5, we get
[tex]f(5)=-|5-5|[/tex][tex]f(5)=-|0|[/tex][tex]f(5)=0[/tex]The point (5,0) is lie on the ray.
Set x=0, and substitute x=0 in the function , we get
[tex]f(0)=-|0-5|[/tex][tex]f(0)=-|-5|[/tex][tex]\text{ Use |-5|=5 since -5<0.}[/tex][tex]f(0)=-5[/tex]The point (0,-5) lies on the ray.
Set x=10, and substitute in function, we get
[tex]f(10)=-|10-5|[/tex][tex]f(10)=-|5|[/tex][tex]f(10)=-5[/tex]The point (10,-5) lies on the function.
Mark these points (5,0), (0,-5), and (10,-5) and join the ray.
The graph of the given function is
When x=2,
[tex]f(2)=-|2-5|=-3[/tex]The point is (2,-3)
When x=8,
[tex]f(8)=-|8-5|=-3[/tex]The point is (8,-3).