Answer:
284 square units -----> 1796 cubic units
177 square units -----> 884 cubic units
380 square units -----> 2789 cubic units
95 square units -----> 349 cubic units
Explanation:
The area of the largest cross-section of the sphere is equal to
[tex]A=\pi r^2[/tex]
Where r is the radius of the sphere and π = 22/7. Solving for r, we get:
[tex]\begin{gathered} \frac{A}{\pi}=r^2 \\ \\ \sqrt{\frac{A}{\pi}}=r \\ \\ r=\sqrt{\frac{A}{\frac{22}{7}}}=\sqrt{\frac{7A}{22}} \end{gathered}[/tex]
Then, with the radius, we will be able to calculate the volume of the half sphere as follows
[tex]\begin{gathered} V=\frac{4}{6}\pi r^3 \\ \\ V=\frac{4}{6}(\frac{22}{7})r^3 \\ \\ V=\frac{44}{21}r^3 \end{gathered}[/tex]
Therefore, for each option, we get:
[tex]\begin{gathered} For\text{ A = 284 square units} \\ r=\sqrt{\frac{7(284)}{22}}=9.5 \\ \\ V=\frac{44}{21}(9.05)^3=1796 \\ \\ Answer=1796\text{ cubic units} \end{gathered}[/tex][tex]\begin{gathered} For\text{ A = 177 square units} \\ r=\sqrt{\frac{7(177)}{22}}=7.5 \\ \\ V=\frac{44}{21}(7.5)^3=884 \\ Answer\text{ = 884 cubic units} \end{gathered}[/tex][tex]\begin{gathered} For\text{ A = 380 square units} \\ r=\sqrt{\frac{7(380)}{22}}=11 \\ \\ V=\frac{44}{21}(11)^3=2789 \\ Anwer=2789\text{ cubic units} \end{gathered}[/tex][tex]\begin{gathered} For\text{ A = 95 square units} \\ r=\sqrt{\frac{7(95)}{22}}=5.5 \\ \\ V=\frac{44}{21}(5.5)^3=349 \\ Anwer=349\text{ cubic units} \end{gathered}[/tex]
Therefore, the answers are
284 square units -----> 1796 cubic units
177 square units -----> 884 cubic units
380 square units -----> 2789 cubic units
95 square units -----> 349 cubic units