Respuesta :
Given the formula:
[tex]F_g=\frac{Gm_1m_2}{d^2}[/tex]Where:
G = 6.67 x 10^-11
m1 = Mass of object per person
m2 - mass of earth
d = distance between objects
Let's solve for the gravitational forces.
We have:
1) Person at sea level:
[tex]F_g=\frac{(6.67\ast10^{-11})\ast75\ast5.97\ast10^{24}}{6377500^2}=734.28N[/tex]2) Person at peak of mount everest:
[tex]F_g=\frac{(6.67\ast10^{-11})\ast75\ast5.97\ast10^{24}}{(6386348-8848)^2}=734.28N[/tex]3) Tiangong-1 satellite:
[tex]F_g=\frac{(6.67\ast10^{-11})\ast8506\ast5.97\ast10^{24}}{(6585500-208000)^2}=83276.91N[/tex]4) Space-X starlink satellite:
[tex]F_g=\frac{(6.67\ast10^{-11})\ast260000\ast5.97\ast10^{24}}{(6916200-538700)^2}=2545496.94N[/tex]5) GPS satellites:
[tex]F_g=\frac{(6.67\ast10^{-11})\ast1630\ast5.97\ast10^{24}}{(26566500-20189000)^2}=15958.31N[/tex]6) GOES weather satellite:
[tex]F_g=\frac{(6.67\ast10^{-11})\ast2857\ast5.97\ast10^{24}}{(42163700-35786200)^2}=27971.10N[/tex]7) DirecTV satellite:
[tex]F_g=\frac{(6.67\ast10^{-11})\ast3573\ast5.97\ast10^{24}}{(42171000-35793500)^2}=34981.00N[/tex]8) SiriusXM:
[tex]F_g=\frac{(6.67\ast10^{-11})\ast7000\ast5.97\ast10^{24}}{(30784500-24407000)^2}=68532.61N[/tex]9) Moon:
[tex]F_g=\frac{(6.67\ast10^{-11})\ast7.35\cdot10^{22}\ast5.97\ast10^{24}}{(384399000-378021500)^2}=7.20\ast10^{23}[/tex]Part 2:
A satellite stay in orbit due to force of gravity and the statellites momentum from its launch into space.
A statellite may fall back to earth due to a drag that causes the staellites orbit go decay. This drag happens when the staellite run into traces of the earth's atmosphere.
Otras preguntas
