Respuesta :

Parallel lines have the same slope. Therefore, we need to first find the slope in the first equation converting the equation in the slope-intercept form so we can determine the equation of the line that passes through the poin(1/9, 7):

[tex]\begin{gathered} Slope\text{ intercept form: y=mx +b} \\ \text{ -10y + 6x=6 } \\ \text{ -10y= -6x + 6} \\ y=\text{ }\frac{-6x}{10}\text{ +}\frac{6}{10} \\ y=\text{ -}\frac{3}{5}x\text{ + }\frac{3}{5} \\ \\ The\text{ slope here is -}\frac{3}{5} \\ \\ Now\text{ that we know we can replace the point in the slope-intercept equation:} \\ y=\text{ mx + b} \\ 7=\text{ -}\frac{3}{5}(\frac{1}{9})\text{ + b} \\ 7=\text{ - }\frac{3}{45}\text{ + b} \\ 7=\text{ -}\frac{1}{15}\text{ + b} \\ 7\text{ + }\frac{1}{15}=\text{ b} \\ \frac{105\text{ + 1}}{15}=\text{ b} \\ \frac{106}{15}=b \\ \\ Therefore\text{ the equation of the line is:} \\ y=\text{ -}\frac{3}{5}x\text{ + }\frac{106}{15} \end{gathered}[/tex]

RELAXING NOICE
Relax