Respuesta :

Note that a radical expression can be express in rational exponents :

[tex]\sqrt[n]{a}=a^{\frac{1}{n}}[/tex]

From the problem, we have :

[tex]\sqrt[3]{a^5x^{10}}=(a^5x^{10})^{\frac{\frac{1}{1}}{3}}[/tex]

When simplifying exponents with parenthesis, the exponents are multiplied with each other.

[tex](a^m)^n=a^{mn}^{}[/tex]

So we have :

[tex]\begin{gathered} (a^5x^{10})^{\frac{1}{3}}=a^{5\times\frac{1}{3}}x^{10\times\frac{1}{3}} \\ \Rightarrow a^{\frac{5}{3}}x^{\frac{10}{3}} \end{gathered}[/tex]

The answer is :

[tex]a^{\frac{5}{3}}x^{\frac{10}{3}}[/tex]

RELAXING NOICE
Relax