-Consider the following equation.y = 5(x2 - 4x)(b.). Find.dx/dt.given x = 4, dy/dt = 8.Enter a fraction, integer, or exact decimal. Do not approximate.Submit Answer

The equation is given to be:
[tex]y=5(x^2-4x)[/tex]The derivative of the function is gotten to be:
[tex]\frac{dy}{dx}=5(2x-4)[/tex]At x = 4, we have:
[tex]\begin{gathered} \frac{dy}{dx}=5(2\cdot4-4)=5(8-4)=5(4) \\ \frac{dy}{dx}=20 \end{gathered}[/tex]Recall that:
[tex]\frac{dy}{dx}=\frac{dy}{dt}\times\frac{dt}{dx}[/tex]We are given the value of dy/dt to be 8. Therefore, we have:
[tex]20=8\cdot\frac{dt}{dx}[/tex]We can therefore solve for dx/dt as follows:
[tex]\begin{gathered} \frac{dt}{dx}=\frac{20}{8}=\frac{5}{2} \\ Inversing\text{ }the\text{ }fractions: \\ \frac{dx}{dt}=\frac{2}{5} \end{gathered}[/tex]ANSWER
[tex]\frac{dx}{dt}=\frac{2}{5}\text{ }or\text{ }0.4[/tex]